
IHSH Internals1

Arne Helme
Stelvio

the Netherlands

Draft of October 22, 2003

1Development of IHSH has been sponsored by SURFnet BV, the Netherlands

Contents

1 Overview 1

2 IHSH Structure 1

3 IHSH Internals 1
3.1 Main Program . 1
3.2 Configuration File Support . 1
3.3 IHSH Command Support . 2
3.4 Misc. Support . 3
3.5 ARS Module Extension . 3

3.5.1 ARS Module Interface . 3
3.5.2 ARS IODEF Functions . 4
3.5.3 Support Functions . 4

A ARS Field IDs 5
A.1 IODEF-Document . 5
A.2 IODEF-Documen-Address . 6

1 Overview

This document describes the internals of the IHSH program. The document is intended for those
whoe, for some reason, have to modify the source code to extend the program or implement
improvements.

2 IHSH Structure

The IHSH program source code consists of the following components:

Main program: Contains the IHSH configuration management and main loop of the program.

Configuration file support: Contains functions to operate on IHSH configuration files.

IHSH command support: Contains functions that implement the IHSH command inter-
preter and functions to operate on the internal XML tree structures.

Misc. support: Contains miscellaneous functions to work with different kinds of input.

ARS module extension: Contains functions to communicate with an external ARS/Remedy
server.

XML input/output extension: Contains functions to read and write XML formatted doc-
uments.

In the rest of this document each of the components is described in more detail with emphasis
on how to modify it.

3 IHSH Internals

3.1 Main Program

The IHSH main program is located in the file ihsh.c, and contains code to configure and run
the IHSH command interpreter and extension modules.

3.2 Configuration File Support

The IHSH configuration file support functions are located in the file ihsh_cfg.c. The module
exports the following functions:

• int ihsh_cfg_readfile(char *fname)

• char *ihsh_cfg_match_str(char *name)

• int ihsh_cfg_match_int(char *name, int *num_p)

• void ihsh_cfg_fdump(FILE *fp)

1

The function ihsh cfg readfile() reads the file with the name fname into IHSH configuration
table. Parse errors and file operation errors are reported back to the caller.

The function ihsh cfg match str() return the string value attribute associated with the config
name name back to the caller. If the variable is not found in the configuration table the value
NULL is returned.

The function ihsh cfg match int() sets *num p to the numerical value associated with the config
name name. If the variable is not found in the configuration table or the value set is not an
integer the value -1 is returned.

The function ihsh cfg fdump() dumps the contents of the IHSI configuration to the output
stream associated with the file pointer fp.

Below follows a piece of source code that illustrates the use of the configuration file functions
to read variables out of the configuration table:

/* Fetch ars_server entry from configuration file */
cfgstr = ihsh_cfg_match_str("ars_server");
if (cfgstr == NULL) {

ARS_DEBUG("’ars_server’ not set in IHSH config file");
return -1;

}
ars_server = cfgstr;

/* Fetch ars_port entry from IHSH configuration file */
errno = 0;
if (ihsh_cfg_match_int("ars_port", &ars_port) < 0) {

ARS_DEBUG("’ars_port’ not set in IHSH config file (or ERANGE)");
return -1;

}
if (ars_port < 0 || ars_port > 65535) {

ARS_DEBUG("’ars_port’ must be 0 <= x < 65535");
return -1;

}

Note that in the case of integers, it is the caller’s responsibility to check whether the integer
value is sane for a given application.

3.3 IHSH Command Support

The IHSH command support functions are located in the file ihsh_cmds.c. The module exports
the following functions:

• int ihsh_cmd(int cmd, char *arg, FILE *fp)

• char *ihsh_parse(char *buf, int *cmd)

and the enumerate type enum cmd.

2

The function ihsh cmd() runs the command cmd with the command line argument arg with
eventual output written to stream fp.

The function ihsh parse() parses the buffer buf and determines the IHSH command type, and
sets *cmd to the determined command type.

Extending the command set of IHSH with new commands is relatively straigtforward. For each
new command, a new values needs to be added to the enumerated type enum cmd, and to the
command table cmdtab. In the switch statement of the function ihsh parse(), an entry must
be made for the new value including the code required to implement the new command. The
new command can be implemented in-line, or as a new function local to the module.

3.4 Misc. Support

The IHSH miscellaneous functions are located in the file ihsh_misc.c. The module exports
the following functions:

• char *ihsh_getline(FILE *fp)

• *ihsh_getlines(FILE *fp)

The function ihsh getline() reads a line including newline character from stream fp. The caller
is responsible for freeing the allocated memory.

The function ihsh getlines() reads multiple lines including newline character from stream fp.
The caller is responsible for freeing the allocated memory. Multi-line input is ended by a single
dot (.) on an otherwise empty line of input.

3.5 ARS Module Extension

The IHSH ARS/Remedy module extension is divided into three sub-components: the IHSH
ARS module interface, the ARS IODEF functions, and a set of generic support functions.

3.5.1 ARS Module Interface

The ARS module interface functions are located in the file ihsh_ars.c. The module exports
the following functions:

• int ihsh_ars_init(void)

• int ihsh_ars_getentry(ih_tree_t *tree, char *entryid)

• int ihsh_ars_setentry(ih_tree_t *tree)

The function ihsh ars init() initializes the ARS module and reads required ARS configuration
variables from the internal IHSH configuration table, and is typically invoked only once from
the main IHSH program. In order for the module to configure successfully, the following con-
figuration variables are required:

3

ars server: DNS name of the machine where the ARS server is running.

ars port: TCP port that the ARS server is listening to.

ars user: ARS user name that IHSH shall use when establishing a session with the
ARS server.

ars passwd: Password to use together with the user name.

ars debug: Toggles the ARS debug output. In the current version of IHSH, ARS
debug information is written to stderr. The debug variable is the only variable
that is optional.

The function ihsh ars getentry() establishes a session with an ARS server and fetches the entry
with ARS Entry ID entryid and builds an internal XML tree representation of the received
data.

The function ihsh ars setentry() establishes a session with the ARS server and updates it with
the contents of the internal XML tree representation of an IODEF document.

3.5.2 ARS IODEF Functions

The ARS IODEF functions are located in the file ihsh_ars_iodef.c. The module exports the
followng functions:

• int ihsh_ars_getentry_iodef(ARControlStruct *control, ih_tree_t *tree, char *entryid)

• int ihsh_ars_setentry_iodef(ARControlStruct *control, ih_tree_t *tree)

The function ihsh ars getentry iodef () invokes and ARS API ARGetEntry() to fetch an entry
from the ARS server, performs the actual conversion between the ARS API representation of
entry information and the IHSH internal representation of IODEF documents. The function
assumes that a session referred to by control has already been established with the server.

The function ihsh ars setentry iodef () performs the actual conversion between the IHSH internal
representation of IODEF documents and the ARS API representation of entry information, and
invokes an ARS API ARSetEntry() call to update the server. The function assumes that a
session referred to by control has already been established with the server.

3.5.3 Support Functions

The ARS support functions are located in the file ihsh_ars_misc.c. The module exports the
following functions:

• void ARS_DEBUG(char *, ...)

• void PrintARFieldValueList(FILE *fp, ARFieldValueList *value)

• void PrintARStatusList(FILE *fp, ARStatusList *fp)

4

together with the integer variable int ars_debug.

The function ARS DEBUG() writes debug information from the ARS module to stderr. The
syntax of the parameters to the function is the same as for the printf(3) family of formatted
output functions in the standard C library.

The function PrintARFieldValueList() is a modified version of a similar function in the driver
program delivered with the ARS APIṪhe function writes a formatted ARS Field Value List to
the stream point to by fp.

The function PrintARStatusList() is a modified version of a similar function in the driver
program delivered with the ARS API. The function writes a formatted ARS Status List to the
stream point to by fp.

A ARS Field IDs

A.1 IODEF-Document

#
File exported Wed Sep 24 08:03:47 2003
#
#AR-Message-Begin Do Not Delete This Line
Schema: CERT: IODEF-Document
Server: weetmuts.surfnet.nl
Login:
Password:
Action: Submit
Values: Submit, Query
Format: Short
Values: Short, Full

purpose !536870946!: handling
Values: handling, statistics, warning, other

restriction !536870947!: need-to-know
Values: public, need-to-know, private, default

IODEF-Message type !536870948!:
Values: incoming, outgoing

Status ! 7!: New
Values: New, Processed, Archived

IncidentID ! 8!: VOID
AlternativeIDs !536870945!:

Description !536870949!:
Submitter ! 2!: $USER$
Assignee ! 4!: auto-submitter

Impact.completion !536870950!: succeeded
Values: failed, succeeded

Expectation.priority !536870955!:
Values: low, medium, high

5

Expectation.Description !536870954!:
Impact.type !536870953!:

Values: admin, dos, file, recon, user, none,
unknown

History ! 10!:
Impact !536870951!:

Method.Description !536870952!:
Type !536870933!: Organization

Values: Organization, Person
Role !536870943!: irt

Values: Creator of IODEF doc, admin, tech,
irt, cc

Record.RecordData.Item !536870970!:
name !536870917!: CERT-NL

Email !536870915!: cert-nl@surfnet.nl
Telephone !536870925!: +31 302305305
Timezone !536870942!: +02:00

#AR-Message-End Do Not Delete This Line

A.2 IODEF-Documen-Address

#
File exported Wed Sep 17 17:21:56 2003
#
#AR-Message-Begin Do Not Delete This Line
Schema: CERT: IODEF-Document-Address
Server: weetmuts.surfnet.nl
Login:
Password:
Action: Submit
Values: Submit, Query
Format: Short
Values: Short, Full

RequestID !1!:
System.category !536870914!:

Values: source, target, intermediate
Address.category !536870915!:

Values: unknown, atm, e-mail, lotus-notes,
mac, sna, vm, ipv4-addr, ipv4-addr-hex,
ipv4-net, ipv4-net-mask, ipv6-addr, ipv6-addr-hex,
ipv6-net, ipv6-net-mask

Address !536870913!:
Submitter ! 2!: $USER$

IODEF-Document ID !536870916!:
Short Description ! 8!: a

Status ! 7!: New

6

Values: New, Assigned, Fixed, Rejected,
Closed
#AR-Message-End Do Not Delete This Line

7

